AI Eraser

Remove unwanted objects from images with AI precision. Upload an image and mask to seamlessly erase specific areas while maintaining natural-looking results.

Credit Cost

Each AI Eraser request costs 1 credit. Ensure you have sufficient credits before making requests.

Endpoint

HTTP Method
POST https://api.mnmlai.dev/v1/ai-eraser

Request

Send a POST request with multipart/form-data containing your image and mask files for precise object removal.

Required Parameters

ParameterTypeDescription
imageFileThe original image from which objects will be removed (multipart/form-data)
maskFileA mask image indicating which areas to erase (white areas = erase, black areas = keep)

Optional Parameters

ParameterTypeDefaultDescription
output_formatString"png"Output image format: "png" | "jpg" | "jpeg"

Response

The AI Eraser endpoint processes your image asynchronously. You'll receive a request ID that you can use to check the status and retrieve the processed image.

Success Response (200 OK)

{
  "status": "success",
  "id": "era_1703123456789_abc12345"
}

Examples

Basic Example

curl -X POST https://api.mnmlai.dev/v1/ai-eraser \
  -H "Accept: application/json" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: multipart/form-data" \
  -F "image=@/path/to/image.jpg" \
  -F "mask=@/path/to/mask.png"

Advanced Example with Output Format

curl -X POST https://api.mnmlai.dev/v1/ai-eraser \
  -H "Accept: application/json" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: multipart/form-data" \
  -F "image=@/path/to/image.jpg" \
  -F "mask=@/path/to/mask.png" \
  -F "output_format=jpg"

Node.js Example

const FormData = require('form-data');
const fs = require('fs');
const axios = require('axios');

const form = new FormData();
form.append('image', fs.createReadStream('image.jpg'));
form.append('mask', fs.createReadStream('mask.png'));
form.append('output_format', 'png');

const response = await axios.post(
  'https://api.mnmlai.dev/v1/ai-eraser',
  form,
  {
    headers: {
      'Accept': 'application/json',
      'Authorization': 'Bearer YOUR_API_KEY',
      ...form.getHeaders()
    }
  }
);

console.log('Request ID:', response.data.id);

Python Example

import requests

url = 'https://api.mnmlai.dev/v1/ai-eraser'

files = {
    'image': open('image.jpg', 'rb'),
    'mask': open('mask.png', 'rb')
}

data = {
    'output_format': 'png'
}

headers = {
    'Accept': 'application/json',
    'Authorization': 'Bearer YOUR_API_KEY'
}

response = requests.post(url, headers=headers, files=files, data=data)
result = response.json()

print(f"Request ID: {result['id']}")

Processing Status

After submitting your request, use the Status Check endpoint with the returned ID to monitor processing progress:

Status Check Endpoint
GET https://api.mnmlai.dev/v1/status/{id}

Best Practices

Image Requirements

  • • Use high-quality images for best results (minimum 256px width)
  • • Ensure the image and mask have the same dimensions
  • • Supported formats: JPG, PNG, GIF (max 8MB each)
  • • Images are automatically resized to 1024px width for processing

Mask Creation Tips

  • • Use white areas to mark objects you want to remove
  • • Use black areas to mark areas you want to keep
  • • Create precise masks for better results
  • • Avoid very small or very large mask areas

Processing Tips

  • • Use PNG format for masks to ensure precise boundaries
  • • Choose appropriate output format based on your needs
  • • Test with smaller images first to optimize your workflow
  • • Each request costs 5 credits, so plan accordingly

Error Handling

Common Error Responses

// 400 Bad Request - Missing required parameters
{
  "status": "error",
  "code": "MISSING_IMAGE",
  "message": "Image file is required"
}

// 400 Bad Request - Missing mask
{
  "status": "error",
  "code": "MISSING_MASK",
  "message": "Mask image is required"
}

// 400 Bad Request - Insufficient credits
{
  "status": "error",
  "code": "NO_CREDITS",
  "message": "You do not have enough credits to use this feature",
  "details": {
    "credits": 2
  }
}

// 400 Bad Request - Invalid image type
{
  "status": "error",
  "code": "INVALID_IMAGE_TYPE",
  "message": "Invalid image type",
  "details": {
    "receivedType": "image/bmp",
    "allowedTypes": ["image/jpeg", "image/png", "image/gif"]
  }
}

// 400 Bad Request - Image too large
{
  "status": "error",
  "code": "IMAGE_TOO_LARGE",
  "message": "Image file is too large",
  "details": {
    "size": 10485760,
    "maxSize": 8388608,
    "unit": "bytes"
  }
}

// 401 Unauthorized - Invalid API key
{
  "status": "error",
  "code": "UNAUTHORIZED",
  "message": "User ID not found in request"
}

// 500 Internal Server Error
{
  "status": "error",
  "code": "INTERNAL_SERVER_ERROR",
  "message": "An unexpected error occurred",
  "details": {
    "error": "Error message",
    "timestamp": "2024-01-01T00:00:00.000Z"
  }
}

Related Endpoints

Explore other AI-powered image processing tools: