ArchDiffusion v4.2

ArchDiffusion v4.2 is our most advanced AI-powered multi-expert rendering engine for architectural visualization. It features an enhanced prompt building system with granular control over every aspect of the render - from camera angles and lighting to environmental elements and material finishes.

How it works: v4.2 uses an intelligent prompt builder that combines your description with expert-specific parameters. Each expert type (exterior, interior, masterplan, landscape, product, plan) has its own specialized parameters that are automatically woven into an optimized prompt for the AI rendering engine.

What's new in v4.2:

  • • Expert-specific parameters for each domain (exterior, interior, masterplan, etc.)
  • • 8 render styles: raw, photoreal, cgi_render, cad, freehand_sketch, clay_model, illustration, watercolor
  • • Geometry modes: precise (accurate) vs creative (artistic freedom)
  • • Granular environmental controls (greenery, vehicles, people, weather, time of day)
  • • Interior-specific controls (room type, furnishing level, lighting mode, ambience)
  • • Product-specific controls (background, lighting, material finish, shadow style)

Credit Cost: 4 credits per generation

Endpoint

HTTP Method
POST https://api.mnmlai.dev/v1/archDiffusion-v42

Request

Send a POST request with multipart/form-data containing your source image and design parameters. The API processes images asynchronously through expert-specific AI pipelines, returning a request ID for status tracking.

AI Prompt Enhancement v4.2

v4.2 features an advanced prompt builder that constructs optimized prompts based on your expert type, render style, and selected parameters. The system intelligently combines geometry blocks, sidebar parameters, and style-specific modifiers.

Example: An exterior request with render_style="photoreal", time_of_day="golden_hour", and greenery="lush" generates a comprehensive prompt with cinematic lighting, volumetric effects, and detailed environmental context.

Want full control?

Set render_style to "raw" to disable AI prompt enhancement and pass your prompt directly to the engine without any modifications.

Required Parameters

ParameterTypeDescription
imageRequiredFileSource architectural image (JPEG, PNG, WebP). Max 15MB, min 1KB
promptRequiredStringDescription of desired transformation (max 2000 characters)

Common Parameters (All Expert Types)

ParameterTypeDefaultDescription
expert_nameString"exterior"Expert mode: "exterior", "interior", "masterplan", "landscape", "plan", "product"
render_styleString"photoreal""raw", "photoreal", "cgi_render", "cad", "freehand_sketch", "clay_model", "illustration", "watercolor"
geometryString"precise""precise" (accurate geometry) or "creative" (artistic freedom)
view_modeString"auto""auto" or "manual"
seedNumberRandomRandom seed for reproducible results (0-1000000)
annotationString"false"Enable annotations: "true" or "false"
show_dimensionsString"false"Show dimensions: "true" or "false"
reference_image_1-4FileNoneOptional style reference images (up to 4)

Exterior Parameters

ParameterDefaultOptions
camera_angleautoauto, eye_level, elevation, low, elevated, aerial, top_down, close_up
camera_directionfrontfront, corner_right, right, back, left, corner_left
site_contextautoauto, urban, suburban, nature
greenerysomenone, some, lush
vehiclesfewnone, few, many
peoplefewnone, few, many
street_propsoffoff, on
motionsubtleoff, subtle, long_exposure
time_of_dayphotoreal onlyautoauto, day, morning, golden_hour, sunset, dusk, blue_hour, night
weatherphotoreal onlyclearclear, overcast, cloudy, hazy, rain, fog, snow
ground_wetnessphotoreal onlydrydry, damp, wet

Note: Environmental parameters like time_of_day, weather, and ground_wetness are only applied when render_style is set to photoreal. These parameters are ignored when using raw mode.

Interior Parameters

ParameterDefaultOptions
room_typeliving roomliving room, bedroom, kitchen, bathroom, dining room, office, etc.
room_styleModern interiorModern interior, Minimalism, Japandi, Industrial, Scandinavian, etc.
furnishing_levelautoauto, empty, minimal, moderate, full
indoor_plantsautoauto, none, some, lush
interior_accessoriesoffoff, on
lighting_modeautoauto, off, natural, artificial, mixed
floor_finishautoauto, matte, reflective
ambienceautoauto, daylight, golden_hour, night

Masterplan Parameters

ParameterDefaultOptions
plan_mode3d3d, 2d
urban_densityautoauto, low, medium, high
development_typeautoauto, residential, commercial, mixed_use, industrial, institutional, recreational
water_featuresautoauto, none, river, lake, coastal, fountains
greenerymoderatesparse, moderate, dense, forest

Landscape Parameters

ParameterDefaultOptions
landscape_stylemodernmodern, traditional, japanese, tropical, mediterranean, desert, etc.
vegetationmoderateminimal, moderate, lush, wild
water_featuresnonenone, pool, pond, fountain, stream, waterfall
hardscapeminimalminimal, moderate, extensive
outdoor_furniturenonenone, minimal, moderate, full
landscape_lightingnonenone, path, accent, dramatic, full

Product Parameters

ParameterDefaultOptions
product_categoryfurniturefurniture, lighting, decor, kitchenware, electronics, fashion, jewelry, packaging, industrial, automotive
backgroundwhitewhite, gradient, studio, contextual, transparent
product_lightingsoftsoft, dramatic, natural, rim, flat
material_finishautoauto, matte, glossy, metallic, wood, fabric, leather, glass, ceramic
shadow_stylesoftnone, contact, soft, dramatic, reflection

Plan Parameters

ParameterDefaultOptions
plan_view_mode2d2d, 3d
drawing_stylearchitecturalarchitectural, schematic, presentation, technical
color_modemonochromemonochrome, colored, gradient
furniture_2doutlinenone, outline, filled, detailed
wall_stylefilledoutline, filled, hatched, poche
view_type_3dbird_eyebird_eye, isometric, perspective, section

Render Styles Guide

Available Render Styles

raw: No prompt enhancement - your exact prompt sent directly to the AI engine
photoreal: Award-winning photorealistic archviz with cinematic quality, ISO noise, chromatic aberration
cgi_render: Professional 3D CGI with VRay/Corona renderer aesthetic, clean surfaces, perfect geometry
cad: Technical CAD drawing with black lines on white background, architectural drafting style
freehand_sketch: Hand-drawn architectural sketch with pencil drawing aesthetic, freehand illustration style
clay_model: Matte clay render showing pure form and volume without materials or textures
illustration: Flat illustration art style for architectural visualization
watercolor: Artistic watercolor painting style with soft colors and painterly aesthetic

Response

The API processes your request asynchronously and immediately returns a response containing a unique request ID. Use this ID with the Status Check endpoint to monitor processing progress and retrieve the final generated image.

Success Response (200 OK)

{
  "status": "success",
  "id": "vysqf2nr0drmc0ctqx5tkdse48",
  "prompt": "Modern commercial building with glass facade",
  "expert_name": "exterior",
  "parameters": {
    "expertType": "exterior",
    "renderStyle": "photoreal",
    "referenceImageCount": 0,
    "promptComponents": {
      "geometry": "precise mode geometry description",
      "sidebar": "environmental settings",
      "style": "photoreal render style"
    }
  },
  "credits": 96
}

Code Examples

1. Basic Exterior Rendering

curl -X POST https://api.mnmlai.dev/v1/archDiffusion-v42 \
  -H "Accept: application/json" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: multipart/form-data" \
  -F "image=@/path/to/building.jpg" \
  -F "prompt=Modern commercial building with glass facade" \
  -F "expert_name=exterior" \
  -F "render_style=photoreal"

2. Interior with Full Parameters

curl -X POST https://api.mnmlai.dev/v1/archDiffusion-v42 \
  -H "Accept: application/json" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: multipart/form-data" \
  -F "image=@/path/to/room.jpg" \
  -F "prompt=Luxury penthouse living room" \
  -F "expert_name=interior" \
  -F "render_style=photoreal" \
  -F "room_type=living room" \
  -F "room_style=Modern interior" \
  -F "furnishing_level=full" \
  -F "indoor_plants=some" \
  -F "lighting_mode=natural" \
  -F "ambience=golden_hour"

3. Product Rendering

curl -X POST https://api.mnmlai.dev/v1/archDiffusion-v42 \
  -H "Accept: application/json" \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: multipart/form-data" \
  -F "image=@/path/to/chair-sketch.jpg" \
  -F "prompt=Designer lounge chair with walnut frame" \
  -F "expert_name=product" \
  -F "render_style=photoreal" \
  -F "product_category=furniture" \
  -F "background=studio" \
  -F "product_lighting=soft" \
  -F "material_finish=wood" \
  -F "shadow_style=soft"

4. Node.js Implementation

const FormData = require('form-data');
const fs = require('fs');
const axios = require('axios');

const form = new FormData();
form.append('image', fs.createReadStream('building.jpg'));
form.append('prompt', 'Modern residential building');
form.append('expert_name', 'exterior');
form.append('render_style', 'photoreal');
form.append('geometry', 'precise');
form.append('time_of_day', 'golden_hour');
form.append('greenery', 'lush');
form.append('weather', 'clear');

const response = await axios.post(
  'https://api.mnmlai.dev/v1/archDiffusion-v42',
  form,
  {
    headers: {
      'Accept': 'application/json',
      'Authorization': 'Bearer YOUR_API_KEY',
      ...form.getHeaders()
    }
  }
);

console.log('Request ID:', response.data.id);
console.log('Remaining credits:', response.data.credits);

5. Python Implementation

import requests

url = 'https://api.mnmlai.dev/v1/archDiffusion-v42'

files = {
    'image': open('building.jpg', 'rb')
}

data = {
    'prompt': 'Modern commercial building with glass facade',
    'expert_name': 'exterior',
    'render_style': 'photoreal',
    'geometry': 'precise',
    'camera_angle': 'eye_level',
    'time_of_day': 'golden_hour',
    'greenery': 'some',
    'vehicles': 'few',
    'people': 'few'
}

headers = {
    'Accept': 'application/json',
    'Authorization': 'Bearer YOUR_API_KEY'
}

response = requests.post(url, headers=headers, files=files, data=data)
result = response.json()

print(f"Request ID: {result['id']}")
print(f"Remaining credits: {result['credits']}")

Checking Processing Status

Status Check Endpoint
GET https://api.mnmlai.dev/v1/status/{id}

Processing Time: Typically 30-60 seconds. Poll the status endpoint every 3-5 seconds until the status becomes "succeeded" or "failed".

Best Practices

Image Guidelines

  • Use high-quality source images (1024px or larger recommended)
  • Supported formats: JPEG, PNG, WebP
  • File size: 1KB - 15MB per image
  • Images are automatically resized to 1344px width

Geometry Mode Selection

  • precise: Maximum architectural accuracy, preserves exact geometry - best for technical visualizations
  • creative: More artistic freedom, enhanced details - best for conceptual presentations

Expert-Specific Tips

  • Exterior: Use time_of_day and weather for dramatic atmospheric effects
  • Interior: Match room_style with furnishing_level for cohesive results
  • Product: Use studio background with soft lighting for clean product shots
  • Masterplan: Use 3d plan_mode with aerial camera for urban visualizations

Error Handling

Common Error Responses

// 400 Bad Request - Missing image
{
  "status": "error",
  "code": "MISSING_IMAGE",
  "message": "Image file is required"
}

// 400 Bad Request - Insufficient credits
{
  "status": "error",
  "code": "NO_CREDITS",
  "message": "You do not have enough credits to use this feature. This API requires 4 credits.",
  "details": { "credits": 2, "required": 4 }
}

// 400 Bad Request - Image too large
{
  "status": "error",
  "code": "IMAGE_TOO_LARGE",
  "message": "Image file is too large",
  "details": { "size": 20000000, "maxSize": 15728640 }
}